Chapter 11

The Large sieve

11.1 Introduction

The goal of this chapter is to introduce the large sieve and some of its applications.
The term “large sieve” was initially coined by Linnik. In some sense, the large sieve
is neither large nor is it a sieve. As we will see in this section, the large sieve -
in its most common formulations nowadays - is really just an inequality. Although
some would not consider the large sieve to be a sieve at all, Linnik initially had an
application in mind that was very sieve-like, so he decided to call it a sieve. He
considered the large sieve to be “large” in the sense that it excludes a lot more
congruence classes (mod p) than other sieves. Whereas many combinatorial sieves
exclude (say) two residue classes, the large sieve can exclude (say) half of the residue
classes (mod p). Later, large sieve results became powerful enough that they turned
out to also be useful when a small number of residue classes (mod p) are excluded.
Hence, the name “large sieve” can feel like a bit of a misnomer when one encounters
it in certain contexts.

At the end of this chapter, we will present one of the most-important applications
of the large sicve: the Bombieri-Vinogradov Theorem. The Bombieri-Vinogradov
Theorem says that primes are more-or-less uniformly distributed (mod ¢) for integers
q up to about z/2. This has many useful applications, as we will see later in this
course.
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11.2 The Large Sieve Inequality

Let’s start with some motivation: Let &/ C Z%, and suppose that we are in a
situation where o
Haly ~ q (the linear sieve).

Recall that, in order to use the Fundamental Lemma of Sieve Methods, we need to
understand 7 in arithmetic progressions by finding an estimate for

(11.2.1) Z’#%—#f,
a<Q

where QQ = 27 for some v € (0,1). Let’s try the following approach: by the orthog-
onality relations (Theorem 3.1.7), if ¢(z) := ¢*™*, then

1 e(b(;z): 1 if d|n,

0 otherwise.

Therefore,

nego
d—1
1 bn
=2 >e(y)
b=0 neo/
_#d | 1 ()
T4 T d “Va )
b=1 ne

where the last equality follows from separating out the term with b = 0 from the
sum. This together with the triangle inequality, shows that

(11.2.2) Z‘#%—#f <Z;d§’;e(b§)

d<Q d<Q -~ b=1

so it makes sense to study these exponential sums associated to /. One example
of an exponential sum associated to a set is the Fourier transform of <
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Definition 11.2.1. Given a set &/ C Z* N [1, 2], we define the Fourier transform
of & as

Fy(t) =Y e(nt)=> 1y(n)e(nt),

neg/ n<xT

where 1, is the characteristic function of &7, i.e.,

1 ifne,

Le(n) = .
0 otherwise.

Therefore, understanding <7 in arithmetic progressions amounts to understand-
ing a double sum for the Fourier transform of o/. We can also study this double
sum more generally by replacing 1,,(n) with a sequence of complex numbers a,,, in
which case we are interested in bounding a double sum with

Z ay, e(nt)
n<x

on the inside. This leads us to the main objective of this chapter, the large sieve
mequality.

The large sieve inequality: Let (a,) be a sequence of complex numbers and let
x,Q € Z*. Then,

22

d<Q 1<b<d
(b,d)=1

2
< (Q2 + 4mz) Z |an|2-

n<x

Yo ()

n<x

In Exercises 11.3 and 11.4 we will see how to use the methods from this chapter
in order to obtain a bound for (11.2.2). For the remainder of this section, we focus
on proving the large sieve inequality. Our proof follows the approach of Cojocaru
and Murty. We begin with the following lemma:

Lemma 11.2.2. Let f € C'([0,1],C) be a periodic function with period 1, and let
Qe Z". Then,

> 2

d<Q 1<b<d
(b,d)=1

)| <@ [ rwrae [ o
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Proof. By the Fundamental Theorem of Calculus,

t

~1(3) = s+ |, @ an

so that, by the triangle inequality, we have

b t
(1123) ‘f(d)‘ <IFO1+ [, 1wl ar
d
Now, let § > 0. Then, integrating (11.2.3) with respect to ¢ over the interval
b 6 b 0§
I=1(6,d.0) = (5= 5.0 +3),

shows that

(@) < [ ronas | [ ireiasa

b
and since x € (E’t)’ then x € I, so that

5]f(2)] < [r@naes| [ 1r@iaca
= | 1r@lar+s | 1@,

Dividing by ¢ allows us to obtain
b 1
11.2.4 - <= ! .
(1124 ()] <], lrotac [ iroar

We now choose § := é By Exercise 11.1, the intervals I don’t overlap for 1 < b < d,
0

with (b,d) = 1 and d < Q. Moreover, these I are also contained in the interval [0, 1].
Therefore, summing (11.2.4) over all such intervals shows that

> 2

d<Q 1<b<d
(b,d)=1

1)) <@ wnac [ e 0

We now apply this lemma to

7t = (X awenn))

n<x
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where (a,,) is a sequence of complex numbers and = € Z*. For simplicity, let
= Z a,e(nt),
n<e

so that
f(t)=S(t)? and f'(t) = 25(t)S'(t).

Then, Lemma 11.2.2 shows that

(11.2.5) SN ISP <@? L |S(t)|2dt+2L 1S(t)S'(t)] dt.

d<Q 1<b<d
(b,d)=1

By Parseval’s identity (Exercise 11.2),

(11.2.6) JIS O dt = |anl,

n<x

and by the Cauchy—Schwartz inequality,

1

J: |S(t)S'(t)| dt < (E 1S(t)[? dt) : (J: 1S'(t)]? dt) 5.

= Z 2mina, e(nt),

n<w

Now, since

once again Parseval’s identity shows that

: ; )
(11.2.7) J|S( ()] dt < (Zmnp) <Z4W2n2|anyz) <2mry |l
0

n<x n<x n<x
Plugging (11.2.6) and (11.2.7) into (11.2.5) proves the large sieve inequality:

SN 1D anc (Nb)‘ Q% +472) ) lan|*.

d<Q 1<b<d ' n<z n<x
(b,d)=1

Montgomery and Vaughan [12], and Selberg [17] independently showed that Q?+47rx
can be replaced by Q? + z, so from now on we will use this improvement. We
summarize what we have done in the following theorem:
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Theorem 11.2.3 (The large sieve inequality). Let (a,) be a sequence of complex
numbers and let x,Q € Z*. Then,

S Y [Soe() c@sa T

d<@ 1<b<d ' n<z n<e
(b,d)=1

60



11.3 The Arithmetic Large Sieve

In Exercise 11.5 you will be asked to prove the following version of the large sieve,
which has a more sieve-like flavor:

Theorem 11.3.1. Let o7 be a set of integers with elements n < x. Let &2 be a set
of primes, and let
Piz)= [ »

pEZN[1,z]
Now, suppose that for each prime p € &, we are given a set {wi,, ... wy,,} of
k, < p residue classes modulo p, and moreover assume that k, =0 forp ¢ &. Now,
denote by S(of, P, z) the number of elements of &/ avoiding all of these residue
classes modulo p for p|P(z). Ezplicitly,

S, P z)=H#{ned : n#w, (modp)V1<i<k, p|P(2)}.

Then,

~ T+ 2
11.3.1 < ,
(11.3.) Sl 2.2) < T2
where

1<g<z pla

The reason that this is a “large” sieve is because excluding more congruence
classes makes the denominator L(z) larger. Even though the large sieve gives better
bounds when we exclude more residue classes, (11.3.1) still allows us to obtain very
good bounds even when we exclude only 1 residue class:

Example 1 (Brun—Titchmarsh revisited). Let

o ={a+mn : n<x/m}
P = gedpm) =1}
1 ifpe P

k, =
0 otherwise

W1 p = 0
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Then
S, P, z) = > 1=S5(,2,2).
acd
a0 (mod p) V p|P(2)

Now, we know that for any x > z > 2, we have
m(z;m,a) < S(, P, z) + w(z;m,a).

Therefore, by the arithmetic large sieve, and the trivial bound 7 (z;m,a) < z, we

have
+ 22

L(z)

To deal with L(z), note that if (¢, m) = 1 and p|q, then (p,m) = 1, so that k, = 1.
Similarly, if (¢, m) # 1, then there is some p|q such that (p,m) # 1, so that k, =0
for said prime. This shows that

3=

m(x;m,a) < + z.

o771
p—1

Liz)= Y pulg)

1<gq<z plg
(g;m)=1

_ Z ,u(q)2

52, vla)
(g;m)=1

_ Z M(C])2
52, ela)
q|P(z)

where the last equality follows from the fact that we are only summing over square-
free q. Now, recall that in Selberg’s sieve we studied the function

(q)*

vz = Y B
1<q<z fi(q)
q|P(z)

where fi satisfies f(n) = >, fi(d) for some multiplicative function f. Hence,
L(z) = V(2) with fi(¢) = ¢(q) and f(n) = n. In Exercise 9.3 you needed to bound
V(2), and it was possible to show that

Vi(z) > M log z,
m
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so that
x4+ mz?

(x;m,a) o(m) log 2 +z

-

Here, take z := ( a )5. We see that

mlog -~

z(1+ bg%)

m(z;m,a) < - — + z.
(p(m)%(log -+ —loglog ")
Now, if = — oo,
1 1 +o(1)
= o(1).
log = —loglog £  log
Thus,
( ) < 2x ( 1 n ( 1 )) N
m(r;m,a) < ——(——+o0 z.
Y ¢(m) \log - log
Of course, z = 0(%), and so
¢(m)log ;-
2 1
(11.3.2) m(z;m,a) < M.
p(m)log -

Using more careful bounds, via the large sieve, Montgomery and Vaughan [13] were
able to remove the o(1) from the inequality, i.e., they showed that

( ) < 2x
m(r;m,a) < —————.
@(m)log =

Note that this is the best bound that we can reasonably hope for, in the sense
that any improvements on the constant 2 would imply the non-existence of Siegel
zeros (which were first introduced in these notes in the discussion following Theorem
6.3.3); see [14] for details.
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11.4 The Bombieri-Vinogradov Theorem

The goal of this section is to study an important application of the large sieve: the
Bombieri-Vinogradov Theorem. The theorem is now named after Enrico Bombieri
and A. I. Vinogradov, who independently proved this result in 1965 and 1966, re-
spectively. (Due to the Iron Curtain, mathematicians in the Soviet Union were often
unaware of recent results on the other side. Mathematicians in the West were also
sometimes unaware, or even neglectful, of what was happening on the Soviet side.
As a result, it makes sense to give credit to both Bombieri and Vinogradov for this
remarkable theorem.)

The Bombieri-Vinogradov Theorem is used in many important proofs in modern
analytic number theory, including the celebrated proofs on bounded gaps between
primes due to Zhang and Maynard. It is a result on primes in arithmetic progres-
sions. It says, roughly speaking, that primes are reasonably uniformly distributed
(mod q) for “small” integers ¢ (where “small” here means values of ¢ at least up to
V).

Let

U(ziga) = > An).

n<x
n=a (mod q)

We begin by recalling the following refinement of the prime number theorem for
arithmetic progressions (Theorem 6.3.2):

Theorem 11.4.1 (Siegel-Walfisz Theorem). For all A > 0 there is a positive con-
stant C'x (depending only on A) such that

Y(x;q,a) = @ + 0(1‘ exp(—C’A\/logx))

for all (a,q) =1 and q < (logz)™.

Of course we expect a better error term in a much wider range for ¢:

Remark 11.4.2. Assuming the Generalized Riemann Hypothesis, for every (a, ¢) =
1, we have

U(w;q,0) — ——~ = O(x3%9)

for all § > 0.
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Assume for a moment that GRH is true and let € > 0. Then, letting 6 = ¢/2 in
the previous remark, we have

X €
TP(% Q»a) - < $1—§ <<A,5

(11.4.1) Z sup =)

. (@,9)=1

x

g2
for any A > 0. It turns out that we don’t need GRH to show that (11.4.1) is
true, and this result is known as the Bombieri- Vinogradov theorem; in other words,
(11.4.1) says that GRH is true on average. We now state the result in the following
slightly stronger form:

Theorem 11.4.3 (The Bombieri-Vinogradov Theorem). For any A,e > 0, we have

. _ Y _r
Z sup 7/1(% q, CL) SO((J) ‘ <<A75 (lOg .’L‘)A :

<z
Lz2”°¢ y\—l
qxT ((l,(])—

The main idea of the proof is to use a method developed by Vaughan to deal
with sums of the form

> Am)f(n).
Unfortunately, these results are a bit technical, and they go beyond the scope for
this course. The interested reader can see the full proof in Appendix A. For the

purposes of the exercises, it will only be necessary to understand the statement of
the Bombieri-Vinogradov theorem.

Sometimes it feels more natural to think about the Bombieri-Vinogradov theorem
in terms of the 7(z) function instead of Chebyshev’s ¢)(x) function. However, it is
important to note that the result is NOT true when we merely replace ¥ (z;q,a)

with 7(z;q,a) and Y with i —. The issue is that the error term is too large
v(q) ¢(q) logx

when we try to approximate 7 (z; ¢, a) with m. Instead, we need the precision
of the logarithmic integral, Li(z):

Theorem 11.4.4 (Bombieri-Vinogradov, 1965/6). For every constant A > 0, there
exists a constant B = B(A) such that

max |7(x;q,a) — A T
10 Lmod ©(q) (logz)
where () = %.
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We will prove a special case Theorem 11.4.4 in Exercise 11.7.

Theorem 11.4.4 tell us that the primes are well-distributed in residue classes
modulo ¢ for “small” values of ¢ (up to about x'/2). In fact, we expect that much
more is true. There is a famous conjecture of Elliot and Halberstam which says that
one should be able to replace the % bound for Q by z'~¢ for any € > 0 instead.
If the Elliot-Halberstam Conjecture is true, it would mean that primes are well-
distributed in residue classes modulo ¢ for “large” values of ¢ as well. So far, this
has not been proven for a single value of ¢ < 1/2. However, Yitang Zhang showed
in 2013 that, by adding two extra conditions to the Theorem 11.4.4 (namely, that

the moduli ¢ are squarefree and y-smooth; that is, they do not contain any prime
1

@.
He used this in order to prove, for the very first time, that there are bounded gaps

factors larger than y) then the Elliott-Halberstam Conjecture holds with ¢ =

between primes.

We will examine some of the groundbreaking work on bounded gaps between
primes, and see the essential role that sieve methods played in these proofs, in the
final lecture of this course.
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11.5 Exercises

Exercise 11.1. For § > 0 and b,d € 7Z, define the intervals

b db ¢
I =(2-22.9
(i) Show that for ¢ := @ and 1 < b < d, (b,d) =1,d < Q, the intervals I(b,d, )

do not overlap.

(i) Let f be as in Lemma 11.2.2 Show that

> ’f(Z)\ < dLl |f(t)|dt+L1 |F/(t)] dt.

1<b<d

Hint: Take 6 = & in (11.2.4).

Exercise 11.2 (Parseval’s Identity). Let (a,) be a sequence of complex numbers,

and let
= Z a, e(nt).

n<x

j|S Pdi =3 fanf?

n<x

Show that

Hint: |S(8)[? = S(H)S(0).

Exercise 11.3. The purpose of this exercise is to give an upper bound for (11.2.2)
using the methods developed in this chapter for dealing with exponential sums. Given
a set of integers &/ C [1, ], let Fyy(t) = >, ., e(nt) be its Fourier transform.

(i) Show that

1 d—1

\Qd

q6l

d—
> | ()] <me T ¥ |
- (bd)=1

Hint: write - = o with (,d') = 1 and write d = d'd".

67



(i)

(iii)

Use the same method as in the proof of the large sieve inequality to show that

S5 [m ()] < @ + ot

d<Q b=1
(b,d)=1

Hint: You can trivially bound the integrals by the Cauchy Schwartz inequality
and then use Parseval’s identity.

Use partial summation to show that
1 — b ;
Za Z ‘E‘”(ﬁ)‘ <L (Q+a)#A>.
d<Q =1
(b.d)=1
Conclude that
of 1
(11.5.1) > ‘#% - #d’ < 1ogQ(Q + x)#.43.

a<Q

Remark 11.5.1. Note that the trivial bound |F.,(t)] < #47 gives us the

estimate Lot

> e TE| < warq,

<@
and so (11.5.1) only beats the trivial bound when & > #;%. Also, note
that (11.5.1) is not <p % for any B > 0, so this bound is not good

enough for a type I estimate. Nevertheless, in the next exercise we will see
how these methods can be adapted to sometimes obtain a type I estimate.

Exercise 11.4. The purpose of this exercise is to give the general idea on how
we can use large sieve type machinery in order to obtain type I estimates. Let
& =77 N[1,z], and as usual, for t € [0,1], let Fo(t) :== > . e(nt) denote the
Fourier transform <f .

(i) Show that

IF(t)] = sin(mwzt) ‘

sin(t)

Hint: Note that e(a) — 1 =e(=95)(c(5) —e(—%)).

68



(i) Prove that for all t € [0, 1],

1
|F ()] < IIllIl{ 2||t||}

where ||-|| denotes the distance to the nearest integer function.

Hint: Begin by comparing the graph of the functions sin(wt) and 2¢ in the
interval [0, 1/2].

(iii) Show that
1
J |F,(t)|dt < log .
0

Hint: Begin by writing

! 1/e !
j|Fm<t>rdt=j |Fx<t>|dt+j Fu(t)]dr,
0

0 1/z

and use the bound from part (ii). To deal with the integral in the interval
(1/2,1), think about using symmetry.

(iv) Using the definition of FL(t), via partial summation, prove that
1
F(t)]dt < xlogz.
|F g
0

(v) Show that

&

-1

Fx( )‘ < (Q*+z)logx.

>
Il

a<Q

1
(b.d)=

s

)=1

Deduce from this that for any Q1 > 1

Q1<d<Q b=

(vi) Use (ii) to show that




(vii) Let e, B > 0, and take Q; = (logz)P™, and Q = x'==. Combine (v) and (vi)
to conclude that

o x
> ot = T | <o o
1<Q 8

Remark 11.5.2. You may have noticed that the conclusion from this exercise
is trivial in the sense that we can avoid all of these computations by noting

that #.47; = |x/d|, and so

B T 3 e gl

dgx —e gzl—s

However, the idea was to show how the methods from this chapter can be
applied to certain sets. A non-trivial example is the set of integers with missing
digits in base 10 (for example, the set of integers with no 7’s in their decimal
expansions). In this case, it is not easy to describe #.47;, but nevertheless
Maynard [10] was able to obtain a type I estimate for this set using the methods
described in this exercise, which roughly amounts to giving L> and L! bounds
for the Fourier transform (parts (ii) and (iii) respectively). Moreover he was
able to show that o7 contains infinitely many primes by combining the type I
estimate with an estimate of a bilinear sum associated to .<7.

The philosophy here is that, if we are able to understand the Fourier transform
associated to a set well enough, then we can understand the set in arithmetic
progressions.
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Exercise 11.5. The purpose of this exercise is to prove the arithmetic large sieve
inequality. Let

S(t) = aye(nt),

n<x

where (a,) is a non zero sequence of complex numbers.

(i) Define
vip):=#{h : 0<h<p,n=h (modp)= a, =0}
and let »)
h(g) = n(g)* ] —2
(q) = ()’ | -
pla
Show that the inequality
q an |2
(11.5.2) HORIOEDS s(q)
(@p=1
is equivalent to
q a 2
(11.5.3) ISB)Phig) < > S(q + 6) (B €R)
a=1
(a,q)=1

(ii) Suppose that (11.5.3) is satisfied for ¢ and ¢ with (q,q') = 1. Show that
(11.5.2) is true when you plug in qq' instead of q. Deduce from this that it
suffices to establish (11.5.2) when q is prime.

Hint: Begin by noting that by the Chinese Remainder Theorem,

2 2

c a b

> Gl = = 2 Js(+p)
1<e<qq’ 1<a<q 1<b<q’
(quq,)zl (avq):]- (b,q/)=1

(iii) For any prime number p, let

S(p, h) = Z .

n<x
n=h (mod p)
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Show that

SOF+ 3 18(0)| =p> IS0

Hint: Use the orthogonality relations.

(iv) Prove that
SO < (= vp) X ISEhI*
h=0

Hint: You do not need to use part (iii). Instead begin by observing that
S(0) = > b=y S(p, ).

(v) Show that (11.5.2) holds for all ¢ > 1. Use this together with the large sieve
inequality to conclude that

(11.5.4) ‘Zan

n<r

2 4+ Q? 9
<TI 2 ll

where o
L(Q) =Y _h(q).

(vi) Prove Theorem 11.3.1.

Exercise 11.6. For each odd prime p, let ny(p) denote the least quadratic non-
residue, i.e., the smallest positive integer ny(p) such that ("27(”) = —1. Note that
na(p) is prime.

A famous congjecture of Vinogradov states that ns(p) <. p° for all € > 0. Even
though this conjecture remains open, in 1941 Linnik developed the large sieve and
used it to show that large values of na(p) are very rare. More specifically, he showed
that

#p<z oma(p) > <1

for all x > 1. The purpose of this exercise is to prove Linnik’s result.

(i) Fize > 0. Let N be a positive integer and let

%=={1<n<N : (Z)ZWPEP},
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where

Show that #.</ >. N.

Hint: Start by showing that <7 contains all numbers 1 < n < N free of prime
divisors > N¢. Use this to deduce that & contains all the numbers of the
, and

form n = mpy - - - pr, where m is any integer such that 1 < m <

N€_€2<pj<N5for1<j<k:£_1.

P1 Dk

(ii) Let a,, be the characteristic function of <. Use the arithmetic large sieve in
the form of Ezercise 11.5 (v) to show that

(iii) Prove that

(iv) Deduce Linnik’s result:
#{p <N : no(p) > N} <. L.
Hint: Show that #P <, 1.

Exercise 11.7. Let
dwiq,a)= > logp.

p<T
p=a (mod q)

(i) Show that

¥z q,a) r V(L5 q,a)
+

5— dt.
log x 5 tlog’t

m(x;q,a) =
Hint: Use partial summation.

(ii) Prove that

e [0, o VT )

m(@ig,0) = log = o tlog?t log =

Hint: First show that ¢(x; ¢, a) — 9(z;q,a) = O(/x).
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(iii) Use the Bombieri Vinogradov theorem to show that

Li(z) ., x
€ (

sup |m(ziq,a) —
7 (@g)=1 ¢(q)

q<zT2

log x)4"

for all A,e > 0.

Exercise 11.8. Let 7(n) = 3_,,, 1 be the divisor counting function.

(1) Show that T(n) =2 Z 1 —0(n), where
d|n
d<|\/7z

1 if n is a square,
5(n) = i q

0 otherwise.

(ii) Prove that for any a € Z, we have

> 6(p+a) <o V.

pPsT

Deduce from this that

Y rlp+a)=2> w(xid,—a) + Ou(Vx).

p< A<y

(We replace d < v/x +a by d < \/x with an error term of O,(\/x).)

(iii) For this exercise, you may use the following version of the Bombieri Vino-
gradov theorem:

_ _Li(x)
(@ a,9) ©(q) ’ <<(

sup
1 (avq)zl

€T
(log ©)8

q<

Show that there is some positive constant ¢ such that

ZT(p+ a) =cr+ Oa<xloglogx).

1
= ogx
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Hint: Split the sum in the following way:

Z 7(x;d, —a) = Z m(x;d, —a) + Z 7(x;d, —a).

A</ z1/2 21/2
< (log x:)8 (log )8 gdgﬁ

For the first sum, use the given form of the Bombieri Vinogradov theorem and
for the second sum, use (11.3.2). You may also use that there is a constant

co > 0 with .
—— =cglo x‘I‘Ol

n<w

for all x > 1, and that

Li(w) = log + O((log 1:)2>

Exercise 11.9. Show that there is some positive constant ¢ such that
1
Z —— =clogz +O(1)
n
forall x > 1.

Hint: First show that ﬁ = de %-

Exercise 11.10. Show that
1 1
—=0(—=).
Z o(m?) (ﬁ)

m>x
Hint: Begin by showing that

' 1
w(m) S .
m logm

Exercise 11.11. Show that every sufficiently large integer n can be written as the
sum of a prime and a squarefree number.

Hint: Let Q(n) denote the number of representations of n as the sum of a prime
number and a squarefree number. Begin by proving that

Q(n) = Z wu(m) = Z p(m)m(n;m?,n).

n_";;“,p mg\/ﬁ
=m r+p

Note that w(n;m?*,n) =0 if m = /n and 7(n;m? n) < 1 if (m,n) > 1. Use these
facts together with the ideas from Exercise 11.8 to show that Q(n) — 0o as n — oo.
When applying the Brun Titchmarsh inequality, Exercise 11.10 can be useful.
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